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INTRODUCTON 

Diabetes mellitus is a group of metabolic disorders 

caused by insulin deficiency, resistance, or both, 

leading to high blood sugar levels (chronic 

hyperglycemia). This condition is a growing global 

health challenge. According to the International 

Diabetes Federation, the number of people with 

diabetes is expected to rise from 537 million in 

2021 to 643 million by 2030, and further to 783 

million by 2045
3,4

. This health problem and its 

financial burdens are significant worldwide
5,7

. 

Additionally, in 2021, over 6.7 million people aged 

20-79 died from diabetes-related issues
3
. High 

fasting glucose levels (over 5.6mmol/l) are 

associated with a higher risk of death
8
. Fluctuating 

blood sugar levels are often linked to nerve damage, 

kidney disease, eye problems, and heart diseases
9,10

. 

ABSTRACT 

Diabetes mellitus is a growing public health problem with increasing incidence and long-term complications. It 

results from insulin deficiency, resistance, or both, leading to high blood sugar levels and various metabolic 

disorders. One strategy to manage this is by activating glucokinase (GK) to enhance glucose use in muscles and 

insulin release from the pancreas. Researchers are testing quinazoline-based compounds to activate GK. In silico 

studies showed that several designed ligands could successfully bind and activate GK, suggesting potential for 

further development and clinical application. 
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Clinical trials show that over half of diabetic 

patients have one or more complications
11,12

, this 

progressively leads to high risk of mortality
13,15

. 

Effective management and treatment of diabetes 

and its complications are crucial. Some people can 

control their blood sugar through weight loss, 

exercise and oral medications, but those with severe 

β-cell damage need insulin
16

. Even with strict 

glucose control strategies, diabetes is rarely 

reversed, and complications are likely to develop
17

. 

Recent strategies for diabetic complications aim to 

prevent or manage these issues based on known 

disease patterns
18

. Due to the limitations of current 

treatments, it’s urgent to find new drugs and targets 

to fight diabetes and its complications. 

Need of New drugs for treatment of Diabetes 

Mellitus 

Several options of drugs available to treat T2DM 

including glucose-lowering agents like which 

suppress hepatic glucose production and increase 

glucose uptake, insulin secretagogues, like 

sulphonylureas and meglitinides, which enhance 

insulin secretion from pancreatic β-cells, 

peroxisome proliferator activated receptor-γ 

(PPAR-γ) activator-like thiazolidinediones, which 

enhance insulin sensitivity and α-glucosidase 

inhibitors which block glucose production in the 

gut, Sodium-Dependent Glucose Co-Transporter 2 

(SGLT2) Inhibitors, glucagon-like peptide 1 

(GLP1) Receptor agonist and DPP-4 inhibitors
77

. 

Those drugs act by different pharmacological 

actions; enhance insulin secretion, increase insulin 

sensitivity, suppress hepatic glucose production, 

and inhibit glucose reabsorption by the kidney
78

. 

Unfortunately, none of these antidiabetic agents 

used to manage hyperglycemia do not stop or 

reverse disease progression and even may have 

severe side effects and comorbidities. For example, 

treatment of T2DM patients with insulin, 

meglitinides and sulfonylureas associated with 

weight gain, hypoglycemia, and treatment with 

thiazolidinediones may cause osteoporosis, 

increased risk of heart failure, fluid retention, 

urinary bladder cancer, and hepatotoxicity. Besides, 

the Anti-diabetic agents like metformin, 

sulfonylureas, and GLP1 agonists lose their 

efficacy
79

. 

Glucokinase Activators 
Glucokinase (GK), also known as hexokinase IV, is 

one of the Hexokinase families, which has a key 

role in glucose metabolism. In the liver, GK 

facilitates glucose uptake and glycogen synthesis. 

GK phosphorylates glucose to glucose- 6-

phosphate, which may enter the mitochondrial to 

produce pyruvate or use as a substrate for 

glycolysis. These processes facilitate glucose 

clearance
112

. In pancreatic β cells, GK regulates 

glycolytic and oxidative ATP synthesis. GK 

increases ATP/ADP ratio, which closes the K+ 

channel, and makes the cell depolarized resulting in 

insulin secretion in Figure No.1. 

 

METHODS AND MATERIAL 

Computational Studies  

The software used for carrying in silico studies 

during the project were 

ACD Freeware 2018 (downloaded from the official 

website) 

PyRx Virtual Screening tool (online) Version 

1.1.1.2 

Biovia discovery studio 

SwissADME Software (online) 

The RCSB Protein Data Bank entry 1V4S 

(https://www.rcsb.org/structure/1V4S) contains the 

computational structure of Human GK. The protein 

was bound in its allosteric site by 5-(1-Methyl-1H-

imidazol-2-yl-thio)-2-amino-4-fluoro-N-(thiazol-2-

yl) benzamide, ATP and Mg
++

. The protein was free 

from the native ligand, refined and made ready for 

docking studies in Discovery Studio Visualizer 

2019. 

As many as 250 protein structures, co-crystallized 

with Mg++ ion, ATP and the bound ligand (either 

RO-28-1675, Piragliatin, or any one of the several 

GKAs from the past) that were available on RSCB-

PDB site to stand for the constitutional metalo-

enzyme with kinase activity, GK, were downloaded 

and subjected to study by Ramachandran Plot
54,55

.
 

This study allowed to have thorough insights 

regarding suitability of the orientations of amino 

acid residues in the computed protein co-

https://www.rcsb.org/structure/1V4S
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crystallized structures to select one out of many for 

the docking studies. Accordingly, co-crystals 5-(1-

methyl-1H-imidazol-2-ylthio)-2-amino-4-fluoro-N-

(thiazol-2-yl) benzamide of GK were obtained from 

the PDB site. PDB Site: 

https://www.rcsb.org/structure/1V4S. The structures 

of designed ligands were constructed using the 

ChemSketch freeware module of ACD Labs. The 

structures have represented by Markush formula in 

the Table No.1 of the Results and discussion 

section. 

Docking Studies 

In the CADD software, the shortlisted structures, 

used as ligands along with the standard RO-28-

1675, were docked into the allosteric site of the 

crystal structure of the enzymes to study the 

interactions between them for selecting those 

designed structures with appropriate binding 

interactions for further studies. For the process, a 

grid was set measuring 5 Å radius around the amino 

acids constituting the allosteric site of the enzyme. 

The structures were docked, setting the Root Mean 

Square deviation at 2.0 tolerance. Binding energies 

(G score) were obtained, choosing the value with 

the lowest RMSD value. During each docking 

study, three interaction poses with lowest G score 

were considered for the final selection. The docking 

studies carried using protein interaction suit of 

Autodock 1.5.6, for 250 ligands. The obtained 

results were imported into Discovery Studio for 

visualizing the results of docking. The results of 

few of the ligands displayed acceptable G-score (-

7.0127 to -7.1323) nearer to the G-score of standard 

ligand, i. e. RO-28-1675 (-.8.9124). The Figure 

No.2 shown in the results and discussion section 

depicts the dock pose of GK bound to one of the 

designed molecules in its allosteric cavity. 

Screening through Molecular Docking 

The combined view of all ligands actively docked in 

the allosteric site of the GK enzyme is given in 

Figure No.3 of the Results and Discussion Section. 

The Figure No.3 represents the ligand docked in the 

allosteric site of the GK enzyme. The images were 

obtained using PyRx virtual screening tool. All the 

designed derivatives were docked and only those 

which displayed expected interactions with the 

amino acid residues, viz. TYR215, TYR210, 

ARG63 and MET205. The ligands which were 

selected were further subjected to check the 

violation of Lipinski Rule of five, for better 

optimization of the study 

Structures of the designed ligands that shows 

good docking score 

The results of the application of Lipinski rule of 

five is given in Table No.2, the ligand binding 

energies of corresponding ligands with GK and the 

corresponding dock score are mentioned Table No.3 

of the results and Discussion section.  

SWISS ADME Study 

The free softwares available online for assisting in 

ADME, ca. SwissADME and docking studies, ca. 

Schrodinger 2020 and AutoDOCK tools (ver. 1.5.7), 

Discovery Studio 2021 for studying the interaction 

between ligands and the selected protein structure
58

. 

The toxicity of these designed structures was 

studied by subjecting the SMILES formula of 

designed structures of quinazoline derivatives. This 

exercise strikes-off number of toxicity concerns
59

 

that would get generated if those structures with 

toxic profiles were to be synthesized in the 

laboratory. Parameters like aqueous solubility (Log 

S), membrane permeability (Log Kp), and synthetic 

accessibility scores (SA), percentage absorption, 

probable pharmacokinetics and drug-likeness 

properties of the designed molecules were thought 

worth to carried as, according to Lipinski rule of five 

assist in summarizing molecular properties of 

designed structures in hope to develop them as 

probable drug candidates with predicted therapeutic 

and pharmacokinetic and toxicity profiles. The rule 

implies considering molecules with molecular 

weights  500, hydrogen bond donors  5, hydrogen 

bond acceptors 10 and rotatable bonds 10, for 

further studies. Hence, significant drug-like 

molecules were shortlisted and studies further. The 

data obtained from SwissADME studies (The amino 

acid residues interacting with the docked ligands, 

their type of interactions, number of hydrogen 

bonds formed) have been displayed in Table No.3. 

 

 

https://www.rcsb.org/structure/1V4S
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RESULTS AND DISCUSSION 

This is the data of SwissADME studies carried on 

selected designed ligands which displayed apparent 

interactions with the AA residues of the enzyme GK 

and comparable Gscore with standard ligand 

(native). Followed by the 2D and 3D poses of 

docked ligands in Table No.4. 

 

 

 

 

 

 

 

 

 

Table No.1: R and R
1 

of the synthesized compound 

S.No Code R R1 

1 Ki -OH -C6H5NO2 

2 Kiii -OH - C6H5NH2 

3 Kiv -OH - C6H5CH3 

4 Kvi -OH - C6H4Cl2 

5 Kix -CH3 - C6H5NO2 

6 Kxii -CH3 - C6H5Cl 

7 Kxiv -CH3 - C6H4Cl2 

8 Kxvi -NH2 - C6H5NO2 

9 Kxviii -NH2 - C6H5Cl 

10 Kxix -NH2 - C6H4Cl2 

11 Kxxi -NHCOCH3 - C6H5NO2 

12 Kxxii -NHCOCH3 - C6H5CH3 

13 Kxxiii -NHCOCH3 - C6H5Cl 

14 Kxxiv -NHCOCH3 - C6H4Cl2 

Table No.2: The results of the application of Lipinski rule of five, the ligand binding energies of 

corresponding ligands with GK, and the corresponding dock score 

S.No Ligand Log P values 
Molecular 

weight 

H-Bond 

donor 

H-Bond 

acceptor 

Lipinski 

Rule of 

Five 

BBM 

1 Ki 

Log Po/w (iLOGP) 2.58 

Log Po/w (XLOGP3) 4.55 

Log Po/w (WLOGP) 4.65 

Log Po/w (MLOGP) 2.51 

Log Po/w (SILICOS-IT) 1.49 

Consensus Log Po/w 3.16 

358.35g/mol 2 5 Yes No 

2 Kii 

Log Po/w (iLOGP) 2.58 

Log Po/w (XLOGP3) 4.55 

Log Po/w (WLOGP) 4.65 

Log Po/w (MLOGP) 2.51 

Log Po/w (SILICOS-IT) 1.49 

Consensus Log Po/w 3.16 

358.35g/mol 2 5 Yes No 

3 Kiii 

Log Po/w (iLOGP) 2.48 

Log Po/w (XLOGP3) 4.04 

Log Po/w (WLOGP) 4.34 

Log Po/w (MLOGP) 2.51 

328.37g/mol 3 3 Yes No 
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Log Po/w (SILICOS-IT) 2.96 

Consensus Log Po/w 3.27 

4 Kiv 

Log Po/w (iLOGP) 3.10 

Log Po/w (XLOGP3) 5.09 

Log Po/w (WLOGP) 5.05 

Log Po/w (MLOGP) 3.56 

Log Po/w (SILICOS-IT) 4.20 

Consensus Log Po/w 4.20 

327.38g/mol 2 3 Yes Yes 

5 Kv 

Log Po/w (iLOGP) 3.14 

Log Po/w (XLOGP3) 5.35 

Log Po/w (WLOGP) 5.40 

Log Po/w (MLOGP) 3.96 

Log Po/w (SILICOS-IT) 4.32 

Consensus Log Po/w 4.43 

347.80g/mol 2 3 Yes Yes 

6 Kvi 

Log Po/w (iLOGP) 3.22 

Log Po/w (XLOGP3) 5.98 

Log Po/w (WLOGP) 5.05 

Log Po/w (MLOGP) 4.45 

Log Po/w (SILICOS-IT) 4.95 

Consensus Log Po/w 4.93 

382.24g/mol 2 3 

Yes; 1 

violatio: 

MLOGP

>4.15 

No 

7 Kvii 

Log Po/w (iLOGP) 3.41 

Log Po/w (XLOGP3) 5.44 

Log Po/w (WLOGP) 5.35 

Log Po/w (MLOGP) 4.28 

Log Po/w (SILICOS-IT) 4.70 

Consensus Log Po/w 4.64 

311.38g/mol 1 2 

Yes; 1 

violatio: 

MLOGP

>4.15 

Yes 

8 Kviii 

Log Po/w (iLOGP) 3.12 

Log Po/w (XLOGP3) 5.27 

Log Po/w (WLOGP) 5.26 

Log Po/w (MLOGP) 3.27 

Log Po/w (SILICOS-IT) 2.49 

Consensus Log Po/w 3.88 

356.38g/mol 1 4 Yes NO 

9 Kix 

Log Po/w (iLOGP) 2.99 

Log Po/w (XLOGP3) 4.76 

Log Po/w (WLOGP) 4.94 

Log Po/w (MLOGP) 3.70 

Log Po/w (SILICOS-IT) 3.96 

Consensus Log Po/w 4.07 

326.39g/mol 2 2 Yes Yes 

10 Kx 

Log Po/w (iLOGP) 3.64 

Log Po/w (XLOGP3) 5.81 

Log Po/w (WLOGP) 5.66 

Log Po/w (MLOGP) 4.36 

Log Po/w (SILICOS-IT) 5.21 

Consensus Log Po/w 4.94 

325.41g/mol 1 2 

Yes; 1 

violatio: 

MLOGP

>4.15 

Yes 

11 Kxi Log Po/w (iLOGP) 3.72 345.82g/mol 1 2 Yes; 1 No 
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Log Po/w (XLOGP3) 6.07 

Log Po/w (WLOGP) 6.00 

Log Po/w (MLOGP) 4.77 

Log Po/w (SILICOS-IT) 5.32 

Consensus Log Po/w 5.18 

violatio: 

MLOGP

>4.15 

12 Kxii 

Log Po/w (iLOGP) 3.80 

Log Po/w (XLOGP3) 6.70 

Log Po/w (WLOGP) 6.66 

Log Po/w (MLOGP) 5.25 

Log Po/w (SILICOS-IT) 5.95 

Consensus Log Po/w 5.67 

380.27g/mol 1 2 

Yes; 1 

violatio: 

MLOGP

>4.15 

No 

13 Kxiii 

Log Po/w (iLOGP) 2.76 

Log Po/w (XLOGP3) 4.40 

Log Po/w (WLOGP) 4.63 

Log Po/w (MLOGP) 3.47 

Log Po/w (SILICOS-IT) 3.46 

Consensus Log Po/w 3.74 

312.37g/mol 2 2 Yes Yes 

14 Kxiv 

Log Po/w (iLOGP) 2.51 

Log Po/w (XLOGP3) 4.23 

Log Po/w (WLOGP) 4.54 

Log Po/w (MLOGP) 2.51 

Log Po/w (SILICOS-IT) 1.26 

Consensus Log Po/w 3.01 

357.37g/mol 2 4 Yes No 

15 Kxv 

Log Po/w (iLOGP) 3.00 

Log Po/w (XLOGP3) 4.76 

Log Po/w (WLOGP) 4.94 

Log Po/w (MLOGP) 3.56 

Log Po/w (SILICOS-IT) 3.96 

Consensus Log Po/w 4.04 

326.39g/mol 2 2 Yes Yes 

16 Kxvi 

Log Po/w (iLOGP) 3.03 

Log Po/w (XLOGP3) 5.02 

Log Po/w (WLOGP) 5.28 

Log Po/w (MLOGP) 3.96 

Log Po/w (SILICOS-IT) 4.08 

Consensus Log Po/w 4.28 

346.81g/mol 2 2 Yes No 

17 Kxvii 

Log Po/w (iLOGP) 3.25 

Log Po/w (XLOGP3) 5.65 

Log Po/w (WLOGP) 5.94 

Log Po/w (MLOGP) 4.45 

Log Po/w (SILICOS-IT) 4.71 

Consensus Log Po/w 4.80 

381.26g/mol 2 2 

Yes; 1 

violatio: 

MLOGP

>4.15 

No 

18 Kxviii 

Log Po/w (iLOGP) 3.15 

Log Po/w (XLOGP3) 4.25 

Log Po/w (WLOGP) 4.81 

Log Po/w (MLOGP) 3.42 

354.40g/mol 2 3 Yes Yes 
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Log Po/w (SILICOS-IT) 3.81 

Consensus Log Po/w 3.89 

19 Kxix 

Log Po/w (iLOGP) 2.83 

Log Po/w (XLOGP3) 4.08 

Log Po/w (WLOGP) 4.72 

Log Po/w (MLOGP) 2.50 

Log Po/w (SILICOS-IT) 1.64 

Consensus Log Po/w 3.15 

399.40g/mol 2 5 Yes No 

20 Kxx 

Log Po/w (iLOGP) 3.31 

Log Po/w (XLOGP3) 4.62 

Log Po/w (WLOGP) 5.12 

Log Po/w (MLOGP) 3.64 

Log Po/w (SILICOS-IT) 4.33 

Consensus Log Po/w 4.20 

368.43g/mol 2 3 Yes No 

21 Kxxi 

Log Po/w (iLOGP) 3.45 

Log Po/w (XLOGP3) 4.88 

Log Po/w (WLOGP) 5.46 

Log Po/w (MLOGP) 3.90 

Log Po/w (SILICOS-IT) 4.45 

Consensus Log Po/w 4.43 

388.85g/mol 2 3 Yes No 

22 Kxxii 

Log Po/w (iLOGP) 3.56 

Log Po/w (XLOGP3) 5.51 

Log Po/w (WLOGP) 6.11 

Log Po/w (MLOGP) 4.38 

Log Po/w (SILICOS-IT) 5.08 

Consensus Log Po/w 4.93 

423.29g/mol 2 3 

Yes; 1 

violatio: 

MLOGP

>4.15 

No 

Table No.3: The interacting AAR, bond length (Å), type of interaction with the enzyme to bind with it 

S.No Ligand AAR 
Type of 

interaction 
Bond type 

Bond 

lengt

h (Å) 

S.No Ligand AAR 
Type of 

interaction 
Bond type 

Bind 

length 

(Å) 

1 
 

A1 

TYR215 No interaction Nil -- 

73 
 

G1 

TYR215 Hydrogen H-Donor 4.2 

TYR214 No interaction Nil -- TYR214 Hydrophobic 
pi-pi 

stacking 
4.5 

ARG633 H-Donor Hydrogen 5.7 ARG633 Hydrogen H-Acceptor 4.4 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil -- PRO66 Hydrogen H-Acceptor 4.7 

2 
 

A2 

-    

74 
 

G2 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.5 

ARG633 H-Donor Hydrogen 5.7 ARG633 Hydrogen H-Acceptor 4.4 

VAL62 H-Acceptor Hydrogen 5.7 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.7 

3 
 

A3 

-    

75 
 

G3 

- 

TYR215 
Hydrogen H-Donor 4.1 

TYR215 No interaction Nil  

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.8 

ARG633 H-Donor Hydrogen 5.7 ARG633 Hydrogen H-Acceptor 4.6 

VAL62 H-Acceptor Hydrogen 5.6 VAL62 Hydrogen H-Donor 5.2 
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PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.8 

4 
 

A4 

 

TYR215 
No interaction Nil  

76 
 

G4 

- 

TYR215 
Hydrogen H-Donor 4.1 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.4 

ARG633 H-Donor Hydrogen 5.6 ARG633 Hydrogen H-Acceptor 4.7 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.8 

5 
 

A5 

- 

TYR215 
No interaction Nil  

77 
 

G5 

- 

TYR215 
Hydrogen H-Donor 5.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.9 

ARG633 H-Donor Hydrogen 5.8 ARG633 Hydrogen H-Acceptor 4.4 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 5.0 

6 
 

A6 

-    

78 
 

G6 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 5.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
5.0 

ARG633 H-Donor Hydrogen 5.8 ARG633 Hydrogen H-Acceptor 5.2 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 4.8 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 5.2 

7 
 

A7 

-    

79 
 

G7 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 5.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.8 

ARG633 H-Donor Hydrogen 5.8 ARG633 Hydrogen H-Acceptor 5.2 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 4.8 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 5.2 

8 
 

A8 

-    

80 
 

G8 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.8 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
5.2 

ARG633 H-Donor Hydrogen 5.9 ARG633 Hydrogen H-Acceptor 4.8 

VAL62 H-Acceptor Hydrogen 6.2 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.3 

9 A9 

-    

81 G9 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 5.8 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
5.2 

ARG633 H-Donor Hydrogen 5.8 ARG633 Hydrogen H-Acceptor 5.8 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 5.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 5.3 

10 A10 

-    

82 G10 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 5.8 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
5.2 

ARG633 H-Donor Hydrogen 5.6 ARG633 Hydrogen H-Acceptor 5.8 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 5.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 5.3 

11 A11 

-    

83 G11 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.8 

TYR214 No interaction Nil  TYR214 Hydrophobic pi-pi 4.2 
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stacking 

ARG633 H-Donor Hydrogen 5.6 ARG633 Hydrogen H-Acceptor 4.3 

VAL62 H-Acceptor Hydrogen 5.8 VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.3 

12 A12 

-    

84 G12 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 5.3 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
5.3 

ARG633 H-Donor Hydrogen 5.6 ARG633 Hydrogen H-Acceptor 5.3 

VAL62 H-Acceptor Hydrogen 5.7 VAL62 Hydrogen H-Donor 5.6 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 5.3 

13 B1 

-  Nil  

85 H1 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 3.9 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 Hydrogen 6.2 
Hydr

ogen 
ARG633 Hydrogen H-Acceptor 3.4 

VAL62 Hydrogen 6.2 
Hydr

ogen 
VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.5 

14 B2 

-  Nil  

86 H2 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.7 

ARG633 H-Donor Hydrogen 6.8 ARG633 Hydrogen H-Acceptor 3.4 

VAL62 H-Acceptor Hydrogen 6.9 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.6 

15 
B3 

-  Nil  

87 H3 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 3.7 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.4 

ARG633 H-Donor Hydrogen 6.9 ARG633 Hydrogen H-Acceptor 3.5 

VAL62 H-Acceptor Hydrogen 6.7 VAL62 Hydrogen H-Donor 3.4 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.5 

   Hydrogen      

16 B4 

- No interaction Hydrogen  

88 H4 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.3 

TYR214 H-Donor Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.4 

ARG633 H-Donor Hydrogen 5.9 ARG633 Hydrogen H-Acceptor 3.4 

VAL62 H-Acceptor Hydrogen 6.2 VAL62 Hydrogen H-Donor 3.4 

PRO66 No interaction Hydrogen  PRO66 Hydrogen H-Acceptor 3.5 

  Nil      

17 B5 

-  Nil  

89 H5 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.5 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Hydrogen 6.4 ARG633 Hydrogen H-Acceptor 3.6 

VAL62 H-Acceptor Hydrogen 6.4 VAL62 Hydrogen H-Donor 3.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.7 

  Nil      

18 B6 
-    

90 H6 
-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 3.9 
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TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Nil 6.7 ARG633 Hydrogen H-Acceptor 3.4 

VAL62 H-Acceptor Nil 6.7 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 3.5 

19 B7 

-  Nil  

91 H7 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.7 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.8 

ARG633 H-Donor Hydrogen 6.4 ARG633 Hydrogen H-Acceptor 3.9 

VAL62 H-Acceptor Hydrogen 6.4 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.8 

  Nil      

20 B8 

-  Nil  

92 H8 

-    

TYR215 No interaction Hydrogen  TYR215 Hydrogen H-Donor 3.3 

TYR214 No interaction Hydrogen  TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Nil 6.5 ARG633 Hydrogen H-Acceptor 3.3 

VAL62 H-Acceptor Nil 6.3 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.6 

        

21 B9 

-    

93 H9 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.3 

ARG633 H-Donor Hydrogen 6.3 ARG633 Hydrogen H-Acceptor 3.6 

VAL62 H-Acceptor Hydrogen 6.5 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction Hydrogen  PRO66 Hydrogen H-Acceptor 3.4 

  Nil      

22 B10 

-  Nil  

94 H10 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.4 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Hydrogen 6.3 ARG633 Hydrogen H-Acceptor 3.4 

VAL62 H-Acceptor Hydrogen 6.0 VAL62 Hydrogen H-Donor 3.4 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.4 

  Nil      

23 B11 

-  Nil  

95 H11 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.6 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.8 

ARG633 H-Donor Hydrogen 6.0 ARG633 Hydrogen H-Acceptor 3.7 

VAL62 H-Acceptor Hydrogen 6.0 VAL62 Hydrogen H-Donor 3.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.4 

24 B12 

-  Nil  

96 H12 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 3.9 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.6 

ARG633 H-Donor Hydrogen 6.1 ARG633 Hydrogen H-Acceptor 3.6 

VAL62 H-Acceptor Hydrogen 6.2 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.5 

25 C1 -    97 II -    
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TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Hydrogen 6.3 ARG633 Hydrogen H-Acceptor 3.4 

VAL62 H-Acceptor Hydrogen 6.3 VAL62 Hydrogen H-Donor 3.5 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 3.5 

26 C2 

-  Nil  

98 I2 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.5 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
4.6 

ARG633 H-Donor Hydrogen 6.3 ARG633 Hydrogen H-Acceptor 4.5 

VAL62 H-Acceptor Hydrogen 6.3 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.5 

  Nil      

27 C3 

-  Hydrogen  

99 I3 

-    

TYR215  Nil  TYR215 Hydrogen H-Donor 4.2 

TYR214  Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.3 

ARG633  Hydrogen 6.3 ARG633 Hydrogen H-Acceptor 4.7 

VAL62  Hydrogen 6.3 VAL62 Hydrogen H-Donor 4.5 

PRO66    PRO66 Hydrogen H-Acceptor 4.5 

28 C4 

-  Nil  

100 I4 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.8 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
4.7 

ARG633 H-Donor Hydrogen 6.4 ARG633 Hydrogen H-Acceptor 4.6 

VAL62 H-Acceptor Hydrogen 6.4 VAL62 Hydrogen H-Donor 4.8 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.5 

29 C5 

-    

101 I5 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 4.8 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.6 

ARG633 H-Donor Hydrogen 6.6 ARG633 Hydrogen H-Acceptor 4.8 

VAL62 H-Acceptor Hydrogen 6.6 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 4.7 

        

30 C6 

-  Nil  

102 I6 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.7 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.6 

ARG633 H-Donor Hydrogen 6.5 ARG633 Hydrogen H-Acceptor 4.7 

VAL62 H-Acceptor Hydrogen 6.8 VAL62 Hydrogen H-Donor 4.8 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.7 

  Nil      

31 C7 

-  Nil  

103 I7 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 4.7 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
4.3 

ARG633 H-Donor Hydrogen 6.6 ARG633 Hydrogen H-Acceptor 4.7 

VAL62 H-Acceptor Hydrogen 6.5 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.6 

32 C8 
-    

104 I8 
-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.7 



    
Hamdani Kulsum and Chatpalliwar V A. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 11(4), 2023, 176-205. 

Available online: www.uptodateresearchpublication.com         October – December                                          187 

 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.7 

ARG633 H-Donor Nil  ARG633 Hydrogen H-Acceptor 4.7 

VAL62 H-Acceptor Hydrogen 6.7 VAL62 Hydrogen H-Donor 4.8 

PRO66 No interaction Hydrogen 6.7 PRO66 Hydrogen H-Acceptor 4.7 

    Nil      

33 C9 

-  Nil  

105 I9 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.6 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
4.4 

ARG633 H-Donor Hydrogen 6.8 ARG633 Hydrogen H-Acceptor 4.8 

VAL62 H-Acceptor Hydrogen 6.8 VAL62 Hydrogen H-Donor 4.7 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.6 

34 C10 

-    

106 I10 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 4.4 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.8 

ARG633 H-Donor Hydrogen 6.6 ARG633 Hydrogen H-Acceptor 4.6 

VAL62 H-Acceptor Hydrogen 6.6 VAL62 Hydrogen H-Donor 4.9 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 4.6 

        

35 C11 

-  Nil  

107 I11 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.7 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.2 

ARG633 H-Donor Hydrogen 6.0 ARG633 Hydrogen H-Acceptor 4.7 

VAL62 H-Acceptor Hydrogen 6.4 VAL62 Hydrogen H-Donor 4.8 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.7 

36 
C12 

-  Nil  

108 I12 

-    

TYR215 No interaction Hydrogen  TYR215 Hydrogen H-Donor 4.2 

TYR214 No interaction Hydrogen  TYR214 Hydrophobic 
pi-pi 

stacking 
4.8 

ARG633 H-Donor Nil 6.3 ARG633 Hydrogen H-Acceptor 4.6 

VAL62 H-Acceptor Nil 6.4 VAL62 Hydrogen H-Donor 4.5 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.6 

   Hydrogen      

37 D1 

-  Hydrogen  

109 J1 

- Hydrogen H-Donor 4.4 

TYR215 No interaction Nil  TYR215 Hydrophobic 
pi-pi 

stacking 
4.4 

TYR214 No interaction Nil  TYR214 Hydrogen H-Acceptor 4.4 

ARG633 H-Donor Nil 6.3 ARG633 Hydrogen H-Donor 4.4 

VAL62 H-Acceptor Hydrogen 6.1 VAL62 Hydrogen H-Acceptor 4.5 

PRO66 No interaction Hydrogen  PRO66 Hydrogen H-Donor 4.5 

  Nil      

38 D2 

-  Nil  

110 J2 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.3 

TYR214 No interaction Hydrogen  TYR214 Hydrophobic 
pi-pi 

stacking 
4.5 

ARG633 H-Donor Hydrogen 6.5 ARG633 Hydrogen H-Acceptor 4.4 

VAL62 H-Acceptor Nil 6.5 VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.4 

  Nil      

39 D3 -  Hydrogen  111 J3 -    
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TYR215 No interaction Hydrogen   TYR215 Hydrogen H-Donor 4.6 

TYR214 No interaction Nil   TYR214 Hydrophobic 
pi-pi 

stacking 
4.8 

ARG633 H-Donor Nil 6.3  ARG633 Hydrogen H-Acceptor 4.7 

VAL62 H-Acceptor Nil 6.1  VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction    PRO66 Hydrogen H-Acceptor 4.7 

40 D4 

-  Nil  

112 J4 

-    

TYR215 No interaction Nil  TYR215    

TYR214 No interaction Nil  TYR214    

ARG633 H-Donor Hydrogen 6.6 ARG633    

VAL62 H-Acceptor Hydrogen 6.3 VAL62    

PRO66 No interaction Nil  PRO66    

41 D5 

-  Nil  

113 J5 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 4.6 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
4.5 

ARG633 H-Donor Hydrogen 6.2 ARG633 Hydrogen H-Acceptor 4.5 

VAL62 H-Acceptor Hydrogen 6.1 VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.5 

42 
D6 

 

-  Hydrogen  

114 
J6 

 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.2 

ARG633 H-Donor Hydrogen 6.4 ARG633 Hydrogen H-Acceptor 4.4 

VAL62 H-Acceptor Hydrogen 6.2 VAL62 Hydrogen H-Donor 4.4 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 4.4 

43 D7 

-  Nil  

115 J7 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.1 

TYR214 No interaction Hydrogen 6.3 TYR214 Hydrophobic 
pi-pi 

stacking 
4.1 

ARG633 H-Donor Hydrogen 6.2 ARG633 Hydrogen H-Acceptor 4.2 

VAL62 H-Acceptor Nil  VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.5 

  Nil      

44 D8 

-    

116 J8 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 4.6 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.5 

ARG633 H-Donor Hydrogen 6.3 ARG633 Hydrogen H-Acceptor 4.5 

VAL62 H-Acceptor Hydrogen 6.2 VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 4.5 

45 D9 

-  Nil  

117 J9 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 4.1 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
4.1 

ARG633 H-Donor Hydrogen 6.2 ARG633 Hydrogen H-Acceptor 4.2 

VAL62 H-Acceptor Hydrogen 5.9 VAL62 Hydrogen H-Donor 4.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 4.5 

46 D10 

-  Nil  

118 J10 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 3.4 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Hydrogen 5.9 ARG633 Hydrogen H-Acceptor 3.7 
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VAL62 H-Acceptor Hydrogen 6.1 VAL62 Hydrogen H-Donor 3.4 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.4 

47 D11 

-    

119 J11 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.6 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
3.6 

ARG633 H-Donor Hydrogen 5.9 ARG633 Hydrogen H-Acceptor 3.6 

VAL62 H-Acceptor Hydrogen 5.4 VAL62 Hydrogen H-Donor 3.6 

PRO66 No interaction Hydrogen  PRO66 Hydrogen H-Acceptor 3.6 

48 

 

D12 

 

 

 

-  Nil  

120 

 

J12 

 

 

 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 3.9 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
3.5 

ARG633 H-Donor Hydrogen 6.7 ARG633 Hydrogen H-Acceptor 3.7 

VAL62 H-Acceptor Hydrogen 6.4 VAL62 Hydrogen H-Donor 3.6 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 3.5 

  Nil      

49 
 

E1 

-    

121 
 

K1 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 2.3 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.3 

ARG633 H-Donor Hydrogen 6.2 ARG633 Hydrogen H-Acceptor 2.3 

VAL62 H-Acceptor Hydrogen 6.2 VAL62 Hydrogen H-Donor 2.3 

PRO66 No interaction Hydrogen  PRO66 Hydrogen H-Acceptor 2.6 

50 
 

E2 

- No interaction Nil  

122 
 

K2 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.2 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.4 

ARG633 H-Donor Hydrogen 6.5 ARG633 Hydrogen H-Acceptor 2.3 

VAL62 H-Acceptor Hydrogen 6.7 VAL62 Hydrogen H-Donor 2.3 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.3 

51 
 

E3 

- H-Acceptor Nil  

123 
 

K3 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 H-Acceptor Hydrogen 6.4 ARG633 Hydrogen H-Acceptor 2.7 

VAL62 H-Donor Hydrogen 6.1 VAL62 Hydrogen H-Donor 2.6 

PRO66  Nil  PRO66 Hydrogen H-Acceptor 2.5 

52 
 

E4 

- No interaction Hydrogen  

124 
 

K4 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.2 

TYR214  Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.3 

ARG633 H-Acceptor Hydrogen 5.2 ARG633 Hydrogen H-Acceptor 2.2 

VAL62 H-Donor Hydrogen 5.1 VAL62 Hydrogen H-Donor 2.2 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 2.4 

53 
 

E5 

- H-Acceptor Nil  

125 
 

K5 

-    

TYR215 No interaction Hydrogen  TYR215 Hydrogen H-Donor 2.1 

TYR214  Hydrogen  TYR214 Hydrophobic 
pi-pi 

stacking 
2.2 

ARG633 H-Acceptor Nil 5.3 ARG633 Hydrogen H-Acceptor 2.5 

VAL62 H-Donor Nil 5.5 VAL62 Hydrogen H-Donor 2.2 

PRO66  Nil  PRO66 Hydrogen H-Acceptor 2.2 

54  - No interaction Hydrogen  126  -    



    
Hamdani Kulsum and Chatpalliwar V A. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 11(4), 2023, 176-205. 

Available online: www.uptodateresearchpublication.com         October – December                                          190 

 

E6 TYR215 No interaction Nil  K6 TYR215 Hydrogen H-Donor 2.0 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.0 

ARG633 H-Acceptor Hydrogen 5.3 ARG633 Hydrogen H-Acceptor 2.0 

VAL62 H-Donor Hydrogen 5.3 VAL62 Hydrogen H-Donor 2.0 

PRO66 No interaction   PRO66 Hydrogen H-Acceptor 2.1 

55 
 

E7 

- H-Donor Nil  

127 
 

K7 

-    

TYR215 H-Acceptor Nil  TYR215 Hydrogen H-Donor 2.0 

TYR214 No interaction  5.4 TYR214 Hydrophobic 
pi-pi 

stacking 
2.4 

ARG633 H-Donor Hydrogen 5.5 ARG633 Hydrogen H-Acceptor 2.0 

VAL62 H-Acceptor Hydrogen  VAL62 Hydrogen H-Donor 2.1 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.0 

56 
 

E8 

-    

128 
 

K8 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 2.3 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 H-Donor Hydrogen 5.4 ARG633 Hydrogen H-Acceptor 2.3 

VAL62 H-Acceptor Hydrogen 5.4 VAL62 Hydrogen H-Donor 2.2 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.1 

57 E9 

- No interaction Nil  

129 K9 

-    

TYR215  Nil  TYR215 Hydrogen H-Donor 2.0 

TYR214  Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.6 

ARG633 H-Donor Hydrogen 5.3 ARG633 Hydrogen H-Acceptor 2.1 

VAL62 H-Acceptor Hydrogen 5.4 VAL62 Hydrogen H-Donor 2.1 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.4 

58 E10 

- H-Acceptor Nil  

130 K10 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 2.2 

TYR214 No interaction   TYR214 Hydrophobic 
pi-pi 

stacking 
2.1 

ARG633 H-Acceptor Hydrogen 5.1 ARG633 Hydrogen H-Acceptor 2.3 

VAL62 H-Donor Hydrogen 5.3 VAL62 Hydrogen H-Donor 2.1 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.2 

59 E11 

- No interaction   

131 K11 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.1 

TYR214 H-Donor Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.2 

ARG633 H-Acceptor Hydrogen 5.1 ARG633 Hydrogen H-Acceptor 2.2 

VAL62 No interaction Hydrogen 5.3 VAL62 Hydrogen H-Donor 2.2 

PRO66 No interaction Hydrogen  PRO66 Hydrogen H-Acceptor 2.2 

   No interaction Nil      

60 E12 

- H-Donor Nil  

132 K12 

-    

TYR215 H-Acceptor Nil  TYR215 Hydrogen H-Donor 2.3 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.4 

ARG633 No interaction Hydrogen 6.8 ARG633 Hydrogen H-Acceptor 2.3 

VAL62 No interaction Hydrogen 6.8 VAL62 Hydrogen H-Donor 2.3 

PRO66 H-Donor Nil  PRO66 Hydrogen H-Acceptor 2.3 

61 F 1 

- No interaction   

133 L1 

-    

TYR215 No interaction Hydrogen  TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 
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ARG633 H-Donor Nil 6.7 ARG633 Hydrogen H-Acceptor 2.7 

VAL62 H-Acceptor Nil 6.7 VAL62 Hydrogen H-Donor 2.6 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.5 

62 F 2 

-  Nil  

134 L 2 

-    

TYR215  Nil  TYR215 Hydrogen H-Donor 3.0 

TYR214 No interaction Hydrogen 6.7 TYR214 Hydrophobic 
pi-pi 

stacking 
2.9 

ARG633 H-Donor Hydrogen 6.7 ARG633 Hydrogen H-Acceptor 2.7 

VAL62 H-Acceptor Nil  VAL62 Hydrogen H-Donor 2.9 

PRO66 H-Donor Nil  PRO66 Hydrogen H-Acceptor 2.8 

63 F 3 

- No interaction Nil  

135 
L3 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.9 

ARG633 H-Donor Hydrogen 6.8 ARG633 Hydrogen H-Acceptor 2.9 

VAL62 H-Acceptor Hydrogen 6.8 VAL62 Hydrogen H-Donor 2.9 

PRO66 No interaction Nil   PRO66 Hydrogen H-Acceptor 2.9 

64 F 4 

- No interaction Nil  

136 L4 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.8 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 H-Donor Hydrogen 6.6 ARG633 Hydrogen H-Acceptor 2.8 

VAL62 H-Acceptor Hydrogen 6.4 VAL62 Hydrogen H-Donor 2.6 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.5 

 H-Donor Nil      

65 F5 

- H-Acceptor Nil  

137 L5 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 H-Acceptor Hydrogen 6.6 ARG633 Hydrogen H-Acceptor 2.7 

VAL62 H-Donor Hydrogen 6.6 VAL62 Hydrogen H-Donor 2.6 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.8 

 No interaction Hydrogen      

66 F6 

- No interaction Hydrogen  

138 L6 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.8 

ARG633 H-Acceptor Hydrogen 7.3 ARG633 Hydrogen H-Acceptor 2.7 

VAL62 H-Donor Hydrogen 7.5 VAL62 Hydrogen H-Donor 2.8 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.8 

67 F7 

- H-Donor Nil  

139 L7 

-    

TYR215 H-Acceptor Nil  TYR215 Hydrogen H-Donor 2.8 

TYR214 No interaction Hydrogen 6.9 TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 No interaction Hydrogen 7.1 ARG633 Hydrogen H-Acceptor 2.8 

VAL62 No interaction Nil  VAL62 Hydrogen H-Donor 2.6 

PRO66 H-Donor Nil  PRO66 Hydrogen H-Acceptor 2.8 

68 F8 

- No interaction   

140 L8 

-    

TYR215 No interaction   TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 H-Donor Nil 6.3 ARG633 Hydrogen H-Acceptor 2.8 

VAL62 H-Acceptor Nil 6.5 VAL62 Hydrogen H-Donor 2.6 
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PRO66 No interaction   PRO66 Hydrogen H-Acceptor 2.5 

69 F9 

- No interaction Nil  

141 L9 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.6 

TYR214 No interaction Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.6 

ARG633 H-Donor Hydrogen 6.9 ARG633 Hydrogen H-Acceptor 2.6 

VAL62 H-Acceptor Hydrogen 6.8 VAL62 Hydrogen H-Donor 2.6 

PRO66 No interaction Nil  PRO66 Hydrogen H-Acceptor 2.6 

70 F 10 

-    

142 L10 

-    

TYR215 No interaction Hydrogen 6.4 TYR215 Hydrogen H-Donor 2.9 

TYR214 No interaction Hydrogen 6.4 TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 No interaction Nil  ARG633 Hydrogen H-Acceptor 2.7 

VAL62 H-Donor Nil 6.9 VAL62 Hydrogen H-Donor 2.6 

PRO66 H-Acceptor Nil 6.8 PRO66 Hydrogen H-Acceptor 2.5 

71 F11 

- No interaction   

143 L11 

-    

TYR215 No interaction Nil  TYR215 Hydrogen H-Donor 2.9 

TYR214 H-Donor Nil  TYR214 Hydrophobic 
pi-pi 

stacking 
2.5 

ARG633 H-Acceptor Nil  ARG633 Hydrogen H-Acceptor 2.4 

VAL62 No interaction Hydrogen 6.7 VAL62 Hydrogen H-Donor 2.5 

PRO66 No interaction Hydrogen 6.8 PRO66 Hydrogen H-Acceptor 2.5 

 No interaction Nil      

72 F12 

- H-Donor Nil  

144 L12 

-    

TYR215 H-Acceptor Nil  TYR215 Hydrogen H-Donor 2.7 

TYR214 No interaction Hydrogen  TYR214 Hydrophobic 
pi-pi 

stacking 
2.8 

ARG633 No interaction Hydrogen 6.9 ARG633 Hydrogen H-Acceptor 2.8 

VAL62 No interaction Nil 6.9 VAL62 Hydrogen H-Donor 2.7 

PRO66 H-Donor Nil  PRO66 Hydrogen H-Acceptor 2.6 

Table No.4: 2D and 3D poses of docked ligands that shows good results of docking and ADME 

Compound 

Code 
2D Structure 3D Structure 

Ki 

  

Kiii 

  

Kiv 
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Kvi 

  

Kix 

  

Kxii 

  

Kxiv 

  

Kxviii
 

  

Kxix 
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Figure No.1: The role of Glucokinase activators 

 
Figure No.2: Dock pose of GK bound to one of the designed molecules in its allosteric cavity 

 

Figure No.3: Combined view of all ligands actively docked in the allosteric site of the GK enzyme 
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Figure No.4: Probable Pharmacophore 

 

CONCLUSION 

Taking into consideration the literature citations as 

Indole nucleus as a pharmacophore, substitutions 

shall form proton donor-acceptor action with the 

peptide linkage of VAL62-ARG63 to bind in the 

LBD to activate the enzyme Pocket 1. Substitutions 

on 1 position shall interact with Pro66 and Tyr215: 

Pocket 2 and substitutions on 5-position shall 

interact with Met210, Met235, Tyr 214: Pocket 3. 

The ligands that showed the foresaid bindings will 

be suitable to be synthesized and successful in 

binding with GK. The results strongly support the 

presence of hydroxyl group at the fifth position of 

the heterocyclic nucleus, as opposed to presence of 

other functional groups (-NH2, -CH3, -NHCO3), 

tried at the same position. The presence of 4-

aminophenyl motif on second position of the 

heterocycle is well tolerated. 
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